Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Vaccines (Basel) ; 11(1)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2241588

RESUMO

Background: Mass basic and booster immunization programs effectively contained the spread of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus, also known as COVID-19. However, the emerging Variants of Concern (VOCs) of COVID-19 evade the immune protection of the vaccine and increase the risk of reinfection. Methods: Serum antibodies of 384 COVID-19 cases recovered from SARS-CoV-2 infection were examined. Correlations between clinical symptoms and antibodies against VOCs were analyzed. Result: All 384 cases (aged 43, range 1−90) were from 15 cities of Guangdong, China. The specific IgA, IgG, and IgM antibodies could be detected within 4−6 weeks after infection. A broad cross-reaction between SARS-CoV-2 and Severe Acute Respiratory Syndrome Coronavirus, but not with Middle East Respiratory Syndrome Coronavirus was found. The titers of neutralization antibodies (NAbs) were significantly correlated with IgG (r = 0.667, p < 0.001), but showed poor neutralizing effects against VOCs. Age, fever, and hormone therapy were independent risk factors for NAbs titers reduction against VOCs. Conclusion: Humoral immunity antibodies from the original strain of COVID-19 showed weak neutralization effects against VOCs, and decreased neutralizing ability was associated with initial age, fever, and hormone therapy, which hindered the effects of the COVID-19 vaccine developed from the SARS-CoV-2 prototype virus.

2.
Nat Commun ; 13(1): 460, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1651070

RESUMO

The SARS-CoV-2 Delta variant has spread rapidly worldwide. To provide data on its virological profile, we here report the first local transmission of Delta in mainland China. All 167 infections could be traced back to the first index case. Daily sequential PCR testing of quarantined individuals indicated that the viral loads of Delta infections, when they first become PCR-positive, were on average ~1000 times greater compared to lineage A/B infections during the first epidemic wave in China in early 2020, suggesting potentially faster viral replication and greater infectiousness of Delta during early infection. The estimated transmission bottleneck size of the Delta variant was generally narrow, with 1-3 virions in 29 donor-recipient transmission pairs. However, the transmission of minor iSNVs resulted in at least 3 of the 34 substitutions that were identified in the outbreak, highlighting the contribution of intra-host variants to population-level viral diversity during rapid spread.


Assuntos
COVID-19/transmissão , Busca de Comunicante/métodos , Surtos de Doenças/prevenção & controle , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/epidemiologia , COVID-19/virologia , Chlorocebus aethiops , Humanos , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Fatores de Tempo , Células Vero , Carga Viral/genética , Carga Viral/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia , Eliminação de Partículas Virais/genética , Eliminação de Partículas Virais/fisiologia
3.
Clin Microbiol Infect ; 26(12): 1690.e1-1690.e4, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1018998

RESUMO

OBJECTIVES: The aim was to understand persistence of the virus in body fluids the and immune response of an infected host to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), an agent of coronavirus disease 2019 (COVID-19). METHODS: We determined the kinetics of viral load in several body fluids through real time reverse transcription polymerase chain reaction, serum antibodies of IgA, IgG and IgM by enzyme-linked immunosorbent assay and neutralizing antibodies by microneutralization assay in 35 COVID-19 cases from two hospitals in Guangdong, China. RESULTS: We found higher viral loads and prolonged shedding of virus RNA in severe cases of COVID-19 in nasopharyngeal (1.3 × 106 vs 6.4 × 104, p < 0.05; 7∼8 weeks) and throat (6.9 × 106 vs 2.9 × 105, p < 0.05; 4∼5 weeks), but similar in sputum samples (5.5 × 106 vs 0.9 × 106, p < 0.05; 4∼5 weeks). Viraemia was rarely detected (2.8%, n = 1/35). We detected early seroconversion of IgA and IgG at the first week after illness onset (day 5, 5.7%, n = 2/35). Neutralizing antibodies were produced in the second week, and observed in all 35 included cases after the third week illness onset. The levels of neutralizing antibodies correlated with IgG (rs = 0.85, p < 0.05; kappa = 0.85) and IgA (rs = 0.64, p < 0.05; kappa = 0.61) in severe, but not mild cases (IgG, rs = 0.42, kappa = 0.33; IgA, rs = 0.32, kappa = 0.22). No correlation with IgM in either severe (rs = 0.17, kappa = 0.06) or mild cases (rs = 0.27, kappa = 0.15) was found. DISCUSSION: We revealed a prolonged shedding of virus RNA in the upper respiratory tract, and evaluated the consistency of production of IgG, IgA, IgM and neutralizing antibodies in COVID-19 cases.


Assuntos
Anticorpos Antivirais/sangue , Líquidos Corporais/virologia , COVID-19/imunologia , Carga Viral , Eliminação de Partículas Virais , Anticorpos Neutralizantes/sangue , Teste de Ácido Nucleico para COVID-19 , Teste Sorológico para COVID-19 , China , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Cinética , Nasofaringe/virologia , Pandemias , Faringe/virologia , RNA Viral/genética , Sistema Respiratório/virologia , SARS-CoV-2 , Escarro/virologia
4.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: covidwho-740271

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus first identified in December 2019. Notable features that make SARS-CoV-2 distinct from most other previously identified betacoronaviruses include a receptor binding domain and a unique insertion of 12 nucleotides or 4 amino acids (PRRA) at the S1/S2 boundary. In this study, we identified two deletion variants of SARS-CoV-2 that either directly affect the polybasic cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN). These deletions were verified by multiple sequencing methods. In vitro results showed that the deletion of NSPRRAR likely does not affect virus replication in Vero and Vero-E6 cells; however, the deletion of QTQTN may restrict late-phase viral replication. The deletion of QTQTN was detected in 3 of 68 clinical samples and 12 of 24 in vitro-isolated viruses, while the deletion of NSPRRAR was identified in 3 in vitro-isolated viruses. Our data indicate that (i) there may be distinct selection pressures on SARS-CoV-2 replication or infection in vitro and in vivo; (ii) an efficient mechanism for deleting this region from the viral genome may exist, given that the deletion variant is commonly detected after two rounds of cell passage; and (iii) the PRRA insertion, which is unique to SARS-CoV-2, is not fixed during virus replication in vitro These findings provide information to aid further investigation of SARS-CoV-2 infection mechanisms and a better understanding of the NSPRRAR deletion variant observed here.IMPORTANCE The spike protein determines the infectivity and host range of coronaviruses. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has two unique features in its spike protein, the receptor binding domain and an insertion of 12 nucleotides at the S1/S2 boundary resulting in a furin-like cleavage site. Here, we identified two deletion variants of SARS-CoV-2 that either directly affect the furin-like cleavage site itself (NSPRRAR) or a flanking sequence (QTQTN), and we investigated these deletions in cell isolates and clinical samples. The absence of the polybasic cleavage site in SARS-CoV-2 did not affect virus replication in Vero or Vero-E6 cells. Our data indicate the PRRAR sequence and the flanking QTQTN sequence are not fixed in vitro; thus, there appears to be distinct selection pressures on SARS-CoV-2 sequences in vitro and in vivo Further investigation of the mechanism of generating these deletion variants and their infectivity in different animal models would improve our understanding of the origin and evolution of this virus.


Assuntos
Betacoronavirus/genética , Betacoronavirus/metabolismo , Deleção de Sequência , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , COVID-19 , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Furina/metabolismo , Genoma Viral , Especificidade de Hospedeiro , Cinética , Modelos Moleculares , Pandemias , Pneumonia Viral/virologia , Conformação Proteica , SARS-CoV-2 , Análise de Sequência , Glicoproteína da Espícula de Coronavírus/química , Células Vero , Replicação Viral
5.
EBioMedicine ; 59: 102960, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-726497

RESUMO

BACKGROUND: Some COVID-19 cases test positive again for SARS-CoV-2 RNA following negative test results and discharge, raising questions about the meaning of virus detection. Better characterization of re-positive cases is urgently needed. METHODS: Clinical data were obtained through Guangdong's COVID-19 surveillance network. Neutralization antibody titre was determined using microneutralization assays. Potential infectivity of clinical samples was evaluated by cell inoculation. SARS-CoV-2 RNA was detected using three different RT-PCR kits and multiplex PCR with nanopore sequencing. FINDINGS: Among 619 discharged COVID-19 cases, 87 re-tested as SARS-CoV-2 positive in circumstances of social isolation. All re-positive cases had mild or moderate symptoms at initial diagnosis and were younger on average (median, 28). Re-positive cases (n = 59) exhibited similar neutralization antibodies (NAbs) titre distributions to other COVID-19 cases (n = 218) tested here. No infectious strain could be obtained by culture and no full-length viral genomes could be sequenced from re-positive cases. INTERPRETATION: Re-positive SARS-CoV-2 cases do not appear to be caused by active reinfection and were identified in ~14% of discharged cases. A robust NAb response and potential virus genome degradation were detected in almost all re-positive cases, suggesting a substantially lower transmission risk, especially through respiratory routes.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , RNA Viral/metabolismo , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Betacoronavirus/isolamento & purificação , COVID-19 , Criança , Pré-Escolar , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Pandemias , Alta do Paciente , Pneumonia Viral/patologia , Pneumonia Viral/virologia , RNA Viral/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2 , Índice de Gravidade de Doença , Sequenciamento Completo do Genoma , Adulto Jovem
6.
Emerg Infect Dis ; 26(8): 1834-1838, 2020 08.
Artigo em Inglês | MEDLINE | ID: covidwho-209889
7.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: covidwho-60418

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Assuntos
Betacoronavirus/genética , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Teorema de Bayes , COVID-19 , China/epidemiologia , Infecções por Coronavirus/virologia , Monitoramento Epidemiológico , Humanos , Funções Verossimilhança , Pandemias , Pneumonia Viral/virologia , SARS-CoV-2 , Viagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA